

Thinking Thermally The opportunity of waste cold

Toby Peters

Professor in Cold Economy, University of Birmingham Co-Director, Centre for Sustainable Cooling Visiting Professor, Heriot-Watt University Visiting Professor, Global Innovation Centre, Kyushu University

co-developer Liquid Air Energy Storage and co-founder Highview Power

The Packaging of LNG

LNG is gas packaged in cold at below -161°C

We transport 350 M tonnes of LNG around the world

Alongside the gas, we also transport 84,000 GWh_{Coolth}

Less than 1% of this is harnessed

main uses being AirSeparation and ElectricityGeneration

Year	LNG market	Opportunity for emission-free cooling
Today	350 MT	84,000 GWh _{Coolth}
2030	500 MT	120,000 GWh _{Coolth}
2040	700 MT	168,000 GWh _{Coolth}

Source: Shell LNG Outlook 2021

Process	Country			
Air separation	China, France, Australia, Japan, South			
	Korea			
Electricity generation	Japan			
Hydrocarbon liquefaction	Japan			
Cryogenic comminution	Japan, South Korea			
Liquid CO2/ dry ice	Japan			
Refrigeration/cold storage	Japan, South Korea			
Seawater desalination	United States			
Gas turbine inlet air cooling	India, Japan, Spain			

The world is off-track to meet the 1.5°C objective of the Paris agreement

The world is also off-track to meet the Sustainable Development Goals and adapt to fast increasing climate heat

Cooling is energy intensive and accounts for 10% of global GHG and is the fastest growing GHG contributor

- ➤ There needs to be a paradigm shift towards sustainable cooling, providing affordable access to clean cooling for all with minimal climatic impact.
- > The challenge is we need to think thermally

The Global Cooling Challenge

600 M tonnes a year of food is lost postharvest, much of it because of lack of coldchain.

25% of vaccines are lost primarily due to lack of cold-chains

2018 was a record year for global deployment of solar renewable at 104 GW of capacity added; energy demand of global Room Air-Conditioners alone sales was 115 GWs

By 2030 over 50% of the world's population will live in hot climates with increasing exposure to potentially dangerous heat conditions

Use thermal energy vector to decouple supply and demand by time and location

- Opens up premium value cooling demands, including in transport (refrigeration / AC)
- > Diversity revenue streams to de-risk capital investment

Impacts

- New high-value revenue
- Avoided new-build electricity generation capacity
- Social / environmental gains
 - Access to cooling food, health, productivity
 - Reduce emissions and health impacts from cooling
 - Mitigate environmental impacts of LNG

Harnessing the waste cold of LNG

cumulative wins to 2050

4,000 TWh_{coolth} emission-free high-grade cold

>780 M tonnes emission savings

\$440 bn of economic value at today's price excluding equipment costs

The New Approach

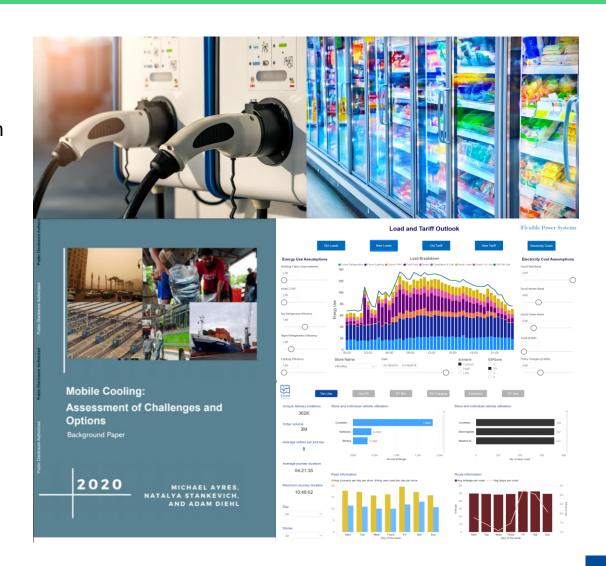
chaired by
Professor Richard Williams
OBE, FREng, FRSE, FTSE and FIChemE, FIMMM, CEng, Csci

Principal and Vice-Chancellor, Heriot-Watt University

Flexible Power Systems

About us

EV fleet and electrical load management technology developer founded 2018. Our offerings combine engineering, operations management and big data to find more cost-effective low carbon hardware and software solutions spanning multiple energy vectors.


What we do

R&D - running £4m worth of advanced transport and energy storage systems research and development projects ranging from thermal energy storage to wireless EV charging hubs.

Consulting - Advisory, planning and modelling services to intragovernmental organisations, retailers, technology developers and strategy consultancies on EV deployment and cooling technologies.

Our Team

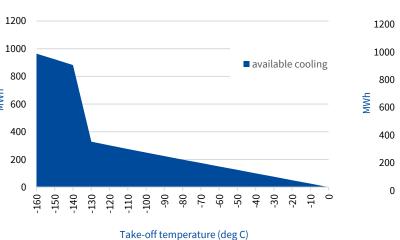
Leadership team have about fifty years' combined experience of advanced energy technology development and deployment across the electricity and transport sectors.

Applications Overview

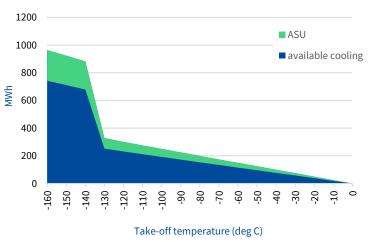
Application	Indicative Min Process Temperature (°C)	Onsite	Packaged LNG Synergy	Very Low Temperature Vectors	Standard Vectors	Examples Where Implemented Currently
						China, France, Japan,
ASU (Nitrogen, Oxygen & Argon)	-196	Χ				South Korea
Liquid Air Energy Storage (LAES)	-196	Χ				UK*
CO2 Liquefaction (& Dry Ice)	-78.5	Χ				Japan
Ethylene Production	-104	Χ				Japan
Power Cycles	-162	Χ	X			Japan
Sea Water Desalination	-10	Χ				USA
Gas Turbine/Engine Inlet Cooling	0	Χ	X		(X)	Japan, Spain
Rubber (& Other Product) Grinding	-196			Х		Japan, South Korea
Produce Freezing	-196		X	Х	Х	Globally*
Evaporative LiN TRU	-196		X	Х		US, Europe*
PCM TRU Recharge	-196		X	Х	Х	N/A
Temp Controlled Warehouse	-40/-80		X		Х	Korea
Ice Manufacturing	-21		X		Х	
District Cooling	4		X		Х	Spain, Singapore
Data Centres	20	Χ	Х		Χ	

^{*} Application demonstrated without terminal coupling

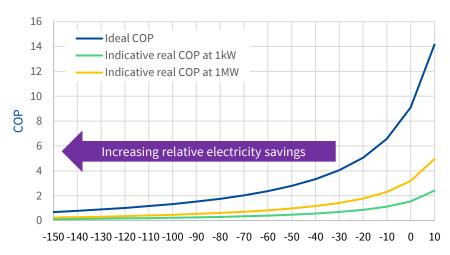
Application Choices

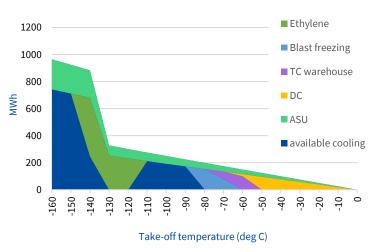


Emission and cost benefits will be highest when lower temperature cooling is displaced because of variations in plant efficiency.


Many of these applications use different ranges of waste cold and so there exists the possibility of stacking applications to make efficient use of available cold resources.

The charts below show an example stack of applications. The optimal stack will depend on local demand and market conditions.


Cooling Use ASU Application

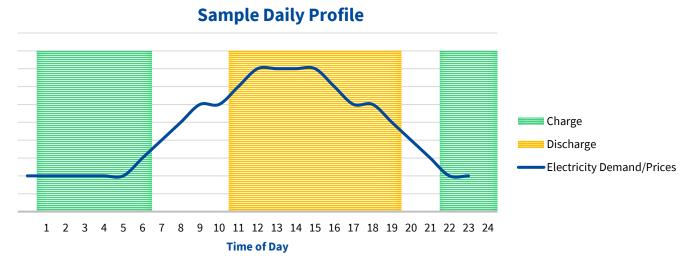

Baseline Cooling Available from LNG

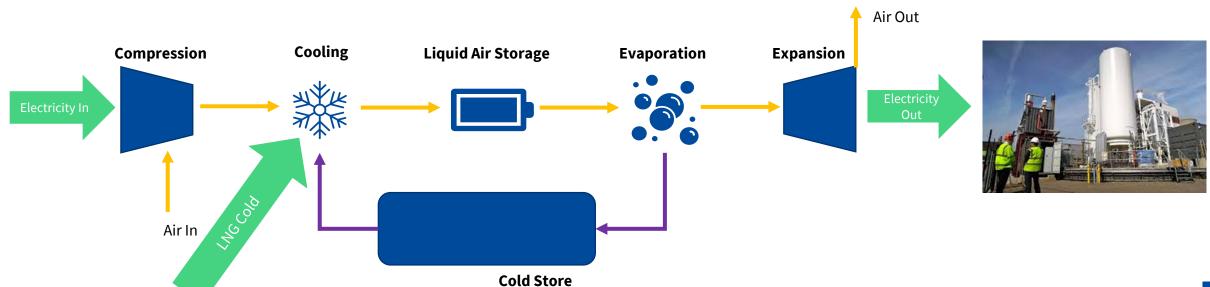
COP vs cooling temperature

Example Cooling Stack

Energy Vectors

Typically an LNG import terminal will be servicing the needs of the local gas infrastructure and so its location or send out rates may not match with when services related to cold recovery applications are required. As a result energy vectors to move the cooling in time or location can improve value.


Vector	Indicative Temperature Range	Indicative Pipeline Feasible Distance	Tanker Feasible Distance	Storage or Transport of Cold?
Water Glycol	-12°C	~20km	N/A	Transport
Slurries	0°C	<5km	N/A	Both
CO2	-60°C	~20km	~200km	Transport
LNG	-162°C	<5km	~200km	Both
LiN	-196°C	<5km	~200km	Both


Electricity Systems Integration - LAES

Several of the applications offer the potential for integration with the electricity system through offering storage or generation capacity expansions.

The potential to enhance LAES cycle efficiency could be very attractive in markets with emerging supply/demand mismatches caused by a combination of variable renewable energy generation and local demand profiles.

Flexible Power Systems (FPS)

FPS is a technology company that helps companies reduce their transport emissions. We combine data analytics with technical and operational expertise to deliver unique solutions to our customers.

The Cold Economy and opportunities to combine LNG with other cooling applications

11th March 2021

Assoc. Prof. Alessandro Romagnoli
School of Mechanical and Aerospace Engineering

email: a.romagnoli@ntu.edu.sg www.thermalenergysystemslab.com

[1] Prof. Toby Peters – University of Birmingham

- Cold Economy introduce by the University of Birmingham in early 2010s
- NTU leading the effort on Cold Economy for Singapore / South-East Asia

Why a Cold Economy study for Singapore / SE Asia?

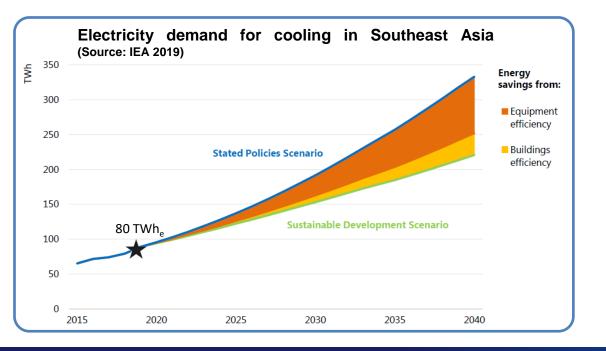
Tropical climate getting warmer

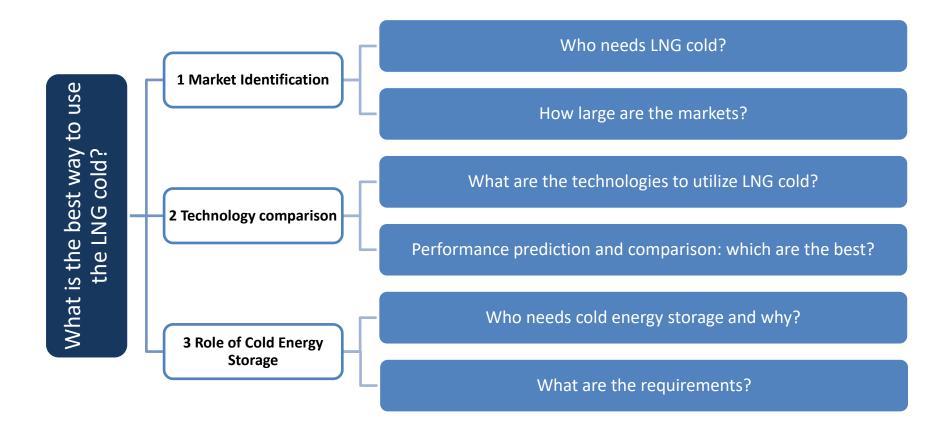
CDD expected to increase by 12% in 2040 ⇒ Higher cooling load

Particular cold energy consumers constantly growing

e.g. Data centres (380 MW - 12% growth) and Cold storage (e.g. vaccines)

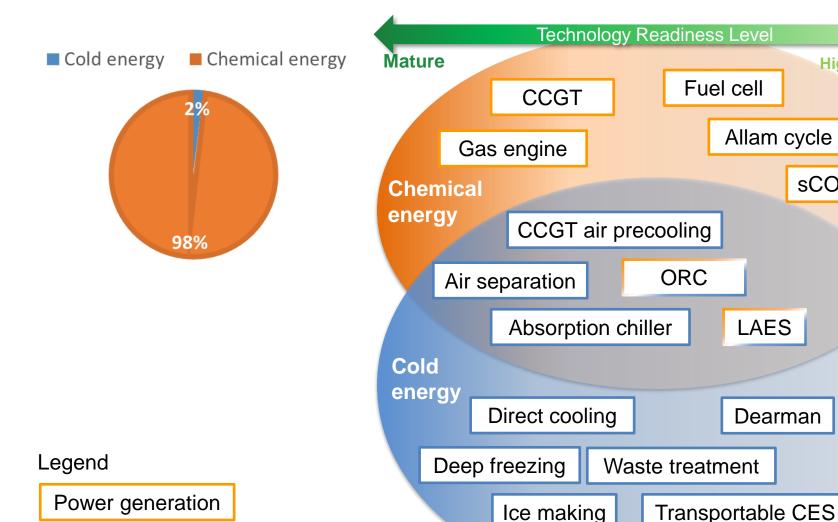
Towards a Mega City


Population expected to increase by 11% in $2040 \Rightarrow$ Higher cold demand


Possibility of storing high-grade cold

About 736 GWh_{cold} is wasted per year during LNG regasification

⇒ Sustainable development scenario

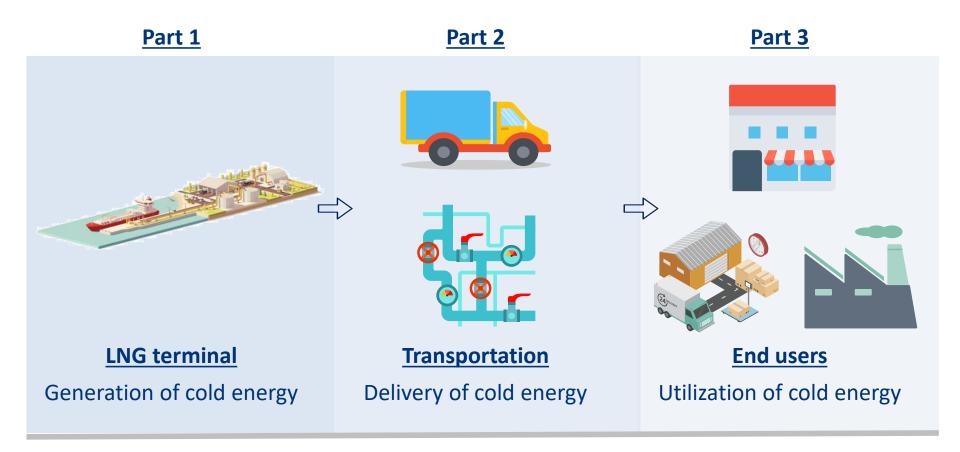


Structure of LNG cold energy potential assessment

Sea water desalination

How to use LNG?

Cold production and/or utilization


High potential

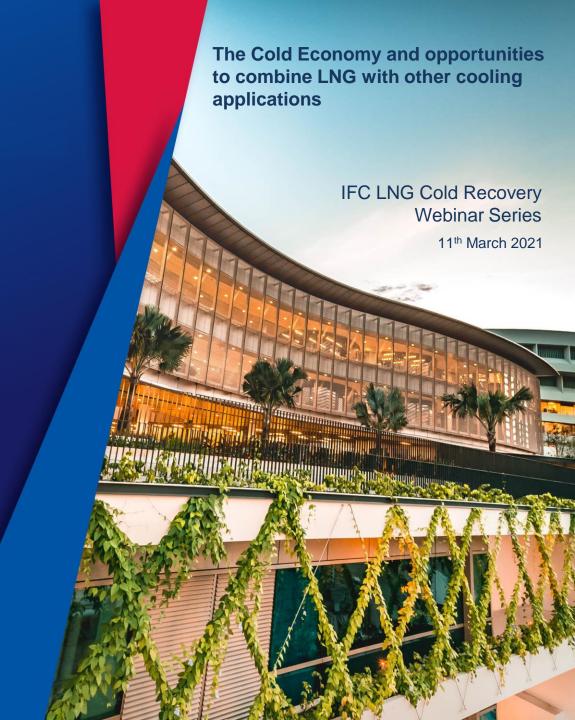
sCO2 cycle

LAES

Dearman

Role of Cold Energy Storage- LNG-based Cold Economy

→ Cold Energy Storage (CES) is essential and can significantly enhance the performance of each part of the LNG-based cold economy



Thank you

Assoc. Prof. Alessandro Romagnoli School of Mechanical and Aerospace Engineering

email: a.romagnoli@ntu.edu.sg www.thermalenergysystemslab.com

